②热管式换热器的工作原理:首先说明热管式蒸汽发生器的主要传热元件--热管的工作原理:热管是一种具有极高导热性能的传热元件,最早应用于航空航天行业,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,管外缠绕高频焊翅片,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。由热管组成的热管式蒸汽发生器具有传热效率高、结构紧凑、流体阻损小、利于控制露点腐蚀
等优点。
炼油厂热管式蒸汽发生器的工作原理:通过优化设计,采用新型换热结构,利用了高效传热的热管,设备采用对称结构,两侧箱体通过高温烟气,中间设备主体走解析脱氧水。烟气先从一侧箱体的入口进入,横掠冲刷热管,热量通过热管传递至设备主体,产生的饱和蒸汽进入汽包。由于热管是单支点焊接,可以自由伸缩,所以不存在温差应力问题。
板式换热器是由一系列具有一定波纹形状的金属片叠装 而成的一种新型高效换热器。各种板片之间形成薄矩形
通道,通过半片进行热量交换。板式换热器是液—液、
液—汽进行热交换的理想设备。它具有换热效率高、
热损失小、结构紧凑轻巧、占 地面积小、安装清洗方
便、应用广泛、使用寿命长等特点。在相同压力损失情
况下,其传热系数比管式换 热器高3-5倍,占地面积为 管式换热器的三分之一,热回收率可高达90%以上。
这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管. 夹套式换热器广泛用于反应过程的加热和冷却。
这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中.蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小.为提高传热系数,容器内可安装搅拌器。
喷淋式换热器
这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水 从上方喷淋装置均匀淋下,故也称喷淋式冷却器.喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多.另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用.因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。
套管式换热器是由直径不同的直管制成的同心套管,并由U形弯头连接而成.在这种换热器中,一种流体走管内,另一种流体走环隙,两者皆可得到较高的流速,故传热系数较大.另外,在套管换热器中,两种流体可为纯逆流,对数平均推动力较大。套管换热器结构简单,能承受高压,应用亦方便(可根据需要增减管段数目). 特别是由于套管换热器同时具备传热系数大,传热推动力大及能够承受高压强的优点,在超高压生产过程(例如操作压力为3000大气压的高压聚乙烯生产过程)中所用的换热器几乎全部是套管式。
管壳式换热器图解管壳式(又称列管式) 换热器是最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。
管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提高管外流体给热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛.。流体在管内每通过管束一次称为一个管程,每通过壳体一次称为一个壳程。为提高管内流体的速度,可在两端封头内设置适当隔板,将全部管子平均分隔成若干组。这样,流体可每次只通过部分管子而往返管束多次,称为多管程。同样,为提高管外流速,可在壳体内安装纵向档板使流体多次通过壳体空间,称多壳程。在管壳式换热器内,由于管内外流体温度不同,壳体和管束的温度也不同。如两者温差很大, 换热器内部将出现很大的热应力,可能使管子弯曲,断裂或从管板上松脱。因此,当管束和壳体温度差超过50℃时,应采取适当的温差补偿措施,消除或减小热应力。
换热器的清洗工艺
1. 隔离设备系统,并将换热器里面的水排放干净。